>Sex=c(1,2,1,2,1,2,1,2,1,2,1,2,1)
>age=c(10,12,10,13,10,12,13,12,21,31,13,14,15)
>boxplot(age~sex)
> ana=aov(age~sex)
> summary(ana)
Df Sum Sq Mean Sq F value Pr(>F)
sex 1 20.6 20.58 0.595 0.457
Residuals 11 380.2 34.56
# if there are more factors,TukeyHSD can be made
>TukeyHSD(ana)
MANOVA
2X2 factorial MANOVA
>mtcar
>x=mtcar
> head(x)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
> manova1=manova(cbind(x$mpg,x$disp,x$hp,x$drat)~x$cyl)
> summary(manova1,test="Wilks")
Df Wilks approx F num Df den Df Pr(>F)
x$cyl 1 0.12459 47.43 4 27 7.882e-12 ***
Residuals 30
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
>plot(mtcars$mpg,mtcars$disp)
>y=cor(mtcars, use="complete.obs", method="pearson")
>plot(x$mpg,x$disp,pch=16,cex=1.3,col="blue")
> lm(x$mpg~x$disp)
REGRESSION LINE
> height <- c(176, 154, 138, 196, 132, 176, 181, 169, 150, 175)
> bodymass <- c(82, 49, 53, 112, 47, 69, 77, 71, 62, 78)
> plot(bodymass, height)
> plot(bodymass, height, pch = 16, cex = 1.3, col = "blue", main = "HEIGHT PLOTTED AGAINST BODY MASS", xlab = "BODY MASS (kg)", ylab = "HEIGHT (cm)")
> lm(height ~ bodymass)
Call:
lm(formula = height ~ bodymass)
Coefficients:
(Intercept) bodymass
98.0054 0.9528
> abline(98.0054, 0.9528)
> abline(lm(height ~ bodymass))
REGRESSION LINE
#ddroy_sta
> height <- c(176, 154, 138, 196, 132, 176, 181, 169, 150, 175)
> bodymass <- c(82, 49, 53, 112, 47, 69, 77, 71, 62, 78)
> plot(bodymass, height)
> plot(bodymass, height, pch = 16, cex = 1.3, col = "blue", main = "HEIGHT PLOTTED AGAINST BODY MASS", xlab = "BODY MASS (kg)", ylab = "HEIGHT (cm)")
> lm(height ~ bodymass)
Call:
lm(formula = height ~ bodymass)
Coefficients:
(Intercept) bodymass
98.0054 0.9528
> abline(98.0054, 0.9528)
> abline(lm(height ~ bodymass))
#ddroy_sta
> height <- c(176, 154, 138, 196, 132, 176, 181, 169, 150, 175)
> bodymass <- c(82, 49, 53, 112, 47, 69, 77, 71, 62, 78)
> plot(bodymass, height)
> plot(bodymass, height, pch = 16, cex = 1.3, col = "blue", main = "HEIGHT PLOTTED AGAINST BODY MASS", xlab = "BODY MASS (kg)", ylab = "HEIGHT (cm)")
> lm(height ~ bodymass)
Call:
lm(formula = height ~ bodymass)
Coefficients:
(Intercept) bodymass
98.0054 0.9528
> abline(98.0054, 0.9528)
> abline(lm(height ~ bodymass))
DISCRIMINANT FUNCTION ANALYSIS
>install.packages("MASS")
Installing
package into ‘C:/Users/cssc/Documents/R/win-library/3.4’
(as
‘lib’ is unspecified)
trying
URL 'https://cran.rstudio.com/bin/windows/contrib/3.4/MASS_7.3-47.zip'
Content
type 'application/zip' length 1171307 bytes (1.1 MB)
downloaded
1.1 MB
package
‘MASS’ successfully unpacked and MD5 sums checked
The
downloaded binary packages are in
C:\Users\cssc\AppData\Local\Temp\RtmpKqK8MD\downloaded_packages
>
library(MASS)
Warning
message:
package
‘MASS’ was built under R version 3.4.3
>
library(MASS)
>
ldf<-lda(CODE~CLEAN_TO+SAFETY_T+COMFORT+ADEQ_TOT+EXPL_TOT+RELB_TOT+EASY_TOT+EQ_OPP_T+WILL_TOT,data=infra)
>ldf
Call:
lda(CODE
~ CLEAN_TO + SAFETY_T + COMFORT + ADEQ_TOT + EXPL_TOT +
RELB_TOT + EASY_TOT + EQ_OPP_T + WILL_TOT,
data = infra)
Prior
probabilities of groups:
3 4
0.5214724
0.4785276
Group
means:
CLEAN_TO SAFETY_T COMFORT ADEQ_TOT EXPL_TOT RELB_TOT EASY_TOT
EQ_OPP_T
3
3.482353 4.082353 3.600000 9.635294 9.529412 4.423529 5.905882 4.258824
4
2.692308 4.179487 2.987179 9.102564 8.423077 3.423077 5.589744 3.064103
WILL_TOT
3
7.223529
4
6.102564
Coefficients
of linear discriminants:
LD1
CLEAN_TO
-0.292921993
SAFETY_T 0.404075174
COMFORT -0.684190835
ADEQ_TOT 0.065820028
EXPL_TOT
-0.158518134
RELB_TOT
-0.874906156
EASY_TOT 0.006923607
EQ_OPP_T
-0.244198968
WILL_TOT 0.062651845
>infra.ldf.p<-predict(ldf,newdata=infra[,c(5,6,7,8,9,10,11,12,13)])$class
>infra.ldf.p
[1] 3 3 3 3 3 3 4 3 4 3 4 4 4 3 4 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[39] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3
[77] 3 3 3 3 4 3 3 3 3 3 4 3 4 3 4 4 3 4 4 4 3
4 4 4 3 4 4 4 4 4 3 4 4 4 4 3 4 4
[115]
4 4 3 3 4 4 3 3 4 4 4 4 4 4 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[153]
4 3 3 4 4 4 4 4 4 4 4
Levels:
3 4
>
table(infra.ldf.p,infra[,3])
infra.ldf.p 3 4
3 76 16
4 9 62
>
plot(infra[,c(5,6,7,8,9,10,11,12,13)],col=infra[,3])
No comments:
Post a Comment